Hepatoprotective effect of *Ecballium Elaterium* fruit juice against paracetamol induced hepatotoxicity in male albino rats

Maraia Farag Elmhdwi, Saleh Mosbah Muftah, Salem Gaber El tumi, Fatma Al-zarour Elslimani

Department of Chemistry (Biochemistry), Faculty of Science, Benghazi University, Libya

ABSTRACT

This study was designed to investigate the antioxidant and hepatoprotective activity of *Ecballium elaterium* "fruit juice" extract against paracetamol induced hepatotoxicity in male albino rats. The hepatotoxicity was induced by acetaminophen (PCM) at dose of 400 mg/kg in male albino rats. It was administered orally once a day, every 48 h at the same time for twenty two days. The biochemical liver functional tests ALT, AST, ALP, total bilirubin, total protein, antioxidant enzymes (GR, GPx, CAT, SOD), and histopathological changes were examined. Our results showed that Levels of liver enzymes ALT, AST, ALP, G-GT and total bilirubin and MDA level were significantly enhanced by administration of acetaminophen and level of total protein while antioxidant enzymes "GR, GPx, CAT, SOD" were decreased. However, the pretreatment with The *E. elaterium* "fruit juice" at 1 ml/kg orally revealed attenuation of serum ALT, AST, ALP. The histopathological studies also supported the protective properties of *E. elaterium* "fruit juice". The area of necrosis and degeneration of hepatocytes were observed in the toxic group. The prophylactic and curative groups showed a marked protective effect with decreased necrotic zones and hepatocellular degeneration. The present results clearly demonstrate the marked antihepatotoxic effects of *E. elaterium* "fruit juice" extract through its antioxidant activity on acetaminophen induced hepatotoxicity in rats.

Key Words: ALT, AST, ALP, MDA, SOD, antioxidant.

INTRODUCTION

Acetaminophen (APAP) (paracetamol) is a commonly used analgesic and antipyretic drug and is safe at therapeutic levels, but overdose can leads to potentially fatal hepatic necrosis in humans and experimental model animals (Proudfoot and Wright, 1970; Prescott, 1980; Khan et al., 2009). APAP overdose is one of the most common/frequent causes of liver failure in western world (Lee, 2004). At overdose APAP is metabolized in the liver by cytochrome P450 (CYP) into reactive metabolite N-acetyl-p-benzoquione imine (NAPQI) (Dahlin et al., 1984; James et al., 2003). NAPQI is known to deplete cellular glutathione (GSH), a natural antioxidant level and generate oxidative stress that turn into production of free radicals such as reactive oxygen (ROS) and reactive nitrogen species (NOS) (Mitchell et al., 1973). This results in imbalance of cellular antioxidant defense mechanism in liver hepatocyte cells and thus finally leads to hepatotoxicity (Reid et al., 2005). Due to known mode of its hepatotoxicity APAP is widely used as a model liver toxin for experimental validation of hepatoprotective drugs.

The production of various free radicals and successive oxidative stress leads to adverse effect on cellular level of an organ. Herbal antioxidant are widely used for the treatment and prevention of several diseases (Uttara et al., 2009). Current therapeutic research is directed towards finding naturally occurring antioxidants particularly of plant origin. Many plant species reported to possess potential biomolecules to become a source of hepatoprotective drugs and search is still going on to find the best one. Tangjung et al. (2011) has reported the uses of different plant species as hepatoprotective among the traditional medicine practitioners of Arunachal Pradesh, India.

There are several herbal formulation claimed have possessed beneficial activity in treating hepatic disorder. In one of our field survey we found that a widely grown plant *Ecballium elaterium* which has claimed to possess hepatoprotective property. The plant contains many biologically active compounds, including contains phenolic compounds, flavonoid, "phytomelin" and triterpenoids (Chaudhari et al., 2009). *E. elaterium* is a medicinal plant, whose fruit juice is used for the treatment of jaundice in folk medicine (Elayan et al., 1989). In Turkey, the fresh fruit juice of this plant is directly applied into the nostrils for the treatment of sinusitis as herbal folk remedy (Nidaljaradat et al., 2012). The juice of *E. elaterium* is fiber free but contains proteins, lipids, sugars, and minerals (Greige et al., 2007). The antioxidant properties of curcubitacin B glucosides and curcubitacin E glucosides (curcubitainglcucoside combination, CGC) and their direct free radical scavenging properties were established (Andrea, 1997).

MATERIALS AND METHODS

Chemicals

Paracetamol was purchased from Sigma Aldrich, commercial kits to estimate antioxidant enzymes were from Biodignostic company, liver function tests were carried out in Benghazi medical center.

Preparation of *Ecballium elaterium* "fruit juice"

The fruits of *Ecballium elaterium* were well crushed and then refined by filtration using Whatman filter paper No. 4. The refined crude juice was used as a plant material to study its effect in treatment of hepatotoxicity.

Animals

Twenty eight healthy adult male albino rats weighing between 110-120g were used for this study. The animals were kept in polypropylene cages and maintained at 24 ±
3°C and a constant light-dark schedule (12 hours light and 12 hours dark cycle). The animals were allowed free access standard commercial rat chow (pellet form, in the sack, Benghazi Animal Feed Company, Benghazi, Libya) and water ad libitum.

Experimental design
The rats were adapted to laboratory condition for seven days before commencement of the experiment. Animals were divided into four groups of seven rats each and treated orally as below for 22 days (Roberts et al., 1991).

- **Group 1:** Rats were fed on the standard diet and served as negative control group.
- **Group 2:** Rats were administered paracetamol 400 mg/kg body weight in distilled water orally every 48 h and served as positive control group.
- **Group 3:** Rats were administered *Ecballium elaterium* "fruit juice" at a dose of 1 ml/kg body weight orally 1 hour before oral administration of paracetamol.
- **Group 4:** Rats were orally dosed daily with a single dose of 300 mg/kg body weight of vitamin C, 1 hour before oral administration of paracetamol.

Sample collection and biochemical assays
The blood samples obtained were collected into plain sample tubes and centrifuged at 1000 rev/min for 5 minutes to separate serum. Serum was carefully withdrawn and kept in eppendorf tubes for the determination of the biochemical parameters.

Assessment of serum marker enzymes
Serum level of ALT and AST, the potential biomarker of hepatic injury was estimated using a commercial kit (Medsource Ozone Biomedicals Pvt. Ltd) (Reitman and Frankel, 1957). Lactate Dehydrogenase (LDH) was determined using the method (Buchl et al., 1978). G-Glutamyltransferase (GGT) by method (Shaw et al., 1983). Serum total protein (T. Protein) was determined using the method (Doumas et al. 1981). Serum albumin (ALB) was analyzed by method described by Doumas and Biggs (1972). Serum total bilirubin (T. Bil) was determined using the method (Lott J A 1987). Alkaline phosphatase (ALP) was determined using the method (Tietz et al., 1983) were assayed using standard Diagnostic kits at Benghazi medical center.

Assessment of antioxidant enzymes
The activities of Glutathione reductase (GR) was determined using the method (Goldberg et al., 1983), Glutathione peroxidase (GPX) was determined using the method (Paglia and Valentine, 1969). Catalase (CAT) was determined using the method (Aebi, 1984), Superoxide dismutase (SOD) was determined using the method (Nishikimi et al., 1972). Malendialdehyde (MDA) was determined using the method (Ohkawa et al., 1979).

Where assayed in research laboratory of biochemistry in Benghazi medical center.

Histological assessment
At the end of experiments, animals in all groups were scarified dislocation for histopathological studies. Liver samples were fixed in 10% neutral buffered formalin overnight, washed well in running tap water, dehydrated, cleared in xylene and embedded in paraffin. Liver sections were cut into 5μm thickness, processed in alcohol grades and stained in haematoxylin and eosin (H&E) (Luna, 1968) for histopathological examinations. Sections were photographed using canon digital image recorder.

Statistical analysis
Resulting data were represented as mean ± SD. Statistical data was analyzed by T-test, between control vs. all treated groups. A probability level of less than 5% (p<0.05) was considered significant.

RESULTS
Serum hepatic marker enzymes status
Oral administration of paracetamol significantly increased the activities of ALT, AST, LDH, G-GT, ALP and T. Bili by 332.68%, 166.80%, 204.29%, 258.60%, 70% and 340%, respectively. Pretreatment of the rats with *E. elaterium* "fruit juice" at 1ml/kg ameliorated these increases by 61.53%, 51.28%, 56.46%, 62.21%, 35.68% and 40.88%, in ALT, AST, LDH, G-GT, ALP and T. Bili, respectively, when compared with positive group. The levels of total protein and albumin decreased significantly by 49.44%, 66.38% respectively. But the level of total protein and albumin increased by 61.67%, 135.78% after treatment with *E. elaterium* "fruit juice" at 1ml/kg when compared to the paracetamol treated group.

Antioxidant enzymes status
After the exposure of rats to paracetamol only a significant decrease in the activities of the antioxidant enzymes GR, GPx, CAT, and SOD, in comparison to the control group by 55.2%, 53.4%, 51.1%, and 60.7% respectively, but the MDA level shows significant increase by 153.5%. Pretreatment of the rats with *E. elaterium* "fruit juice" at 1ml/kg increase the activity of these enzymes GR, GPx, CAT, and SOD by 89.5%, 72.2%, 77.3%, and 111.5%, respectively, and significant decrease in MDA by 44.3% when compared to the paracetamol treated group.

Histopathology
Aphotomicrographs of liver sections showed (figure 1-4) effect of various treatments: (1) Liver section of rat showing normal architecture of hepatocytes (control); (2) Liver section of rat treated with 400mg/kg of paracetamol. (3) Liver section of rat treated with paracetamol and *Ecballium elaterium* "fruit juice" extract at 100 ml/kg. (4) Liver section of rat treated with paracetamol and vitamin C at 300 mg/kg.

DISCUSSION
Hepatotoxicity is the potential complication of paracetamol, which is widely, used in general medicine and an assessment of its relative toxicity is important. The primary toxicity of paracetamol is the result of drug metabolism in liver. At therapeutic doses, paracetamol is metabolized via glucuronidation and sulfation reactions result in the water-soluble metabolites that are excreted via the kidney. The result of the metabolic conversion of paracetamol by the microsomal P-450 enzyme system is that, a highly reactive intermediate, namely, N-Acetyl-P-Benzoquinone Imine (NAPQI) is produced. This metabolite is then reduced by Glutathione (GSH) (Jaeschkea et al., 2002; Gardner et al., 1998; Gardner et al., 2002).

GSH depletion makes the hepatocytes susceptible to the toxic effects of NAPQI. Its depletion allows NAPQI to bind irreversibly and covalently to cell macromolecules. Primary cellular targets have been postulated to be mitochondrial proteins, with resulting loss of energy production (Doshi et al., 2012). This process disrupts homeostasis and initiates apoptosis “programmed cell death” leading to tissue necrosis and ultimately to organ dysfunction (Jaeschkea et al., 2002). Because liver damage arising from necrosis or
membrane damage normally releases the enzymes into circulation; therefore, measurement of these enzymes in serum gives an indication of the health status of the liver. An increase in AST and ALT, a hepatospecific enzymes, which is principally found in the cytoplasm in the rats following administration of a hepatotoxin is attributed to the increased release of enzymes from the damaged liver. It is known that an increase in the enzymatic activity of ALT and AST in the serum directly reflects a major permeability or cell rupture (Walubo et al., 2004; Kim et al., 2009; Jin et al., 2012).

The depression in GSH contents along with GST activity makes the cells more susceptible to by toxic electrophilic compounds. In this study, the observed decrease in GPx an oxidative type of injury with acetaminophen in the present investigation. The decrease in GPx activity makes the cells more susceptible to toxic compounds. Administration of Ecballium elaterium "fruit juice" (1 ml/kg) on paracetamol induced hepatotoxicity resulted in decreased levels of AST, ALT, ALP, LDH, GGT, bilirubin and elevated total protein and albumin. This effect clearly indicated that "fruit juice" of Ecballium elaterium may offer protection by stabilizing the cell membrane in hepatic damage induced by paracetamol. Furthermore it has been reported that E. elaterium "fruit juice" decreases the liver marker enzymes during carbon tetrachloride induced hepatotoxicity (Al-Howiriny, 2008; Jaeschke et al., 2003). Paracetamol is known to produce oxidative damage in the liver by enhancing peroxidation of membrane lipids, a deleterious process solely carried out by free radicals. Where hepatic lipids are reported to be increased during oxidative stress (Jaeschke et al., 2002). The free radicals attack the cell membrane, thus leading to destabilization and disintegration of the cell membrane as a result of lipid peroxidation (Jaeschke et al., 2003). The depression in GSH contents along with GST activity makes the cells more susceptible to by toxic electrophilic compounds. In this study, the observed decrease in GPx an oxidative type of injury with acetaminophen-induced hepatotoxicity. The decrease in GPx is potentially ascribable to inactivation of the increase in reactive oxygen species (ROS) or lipid peroxides when oxidative damage is extreme (Lauterburg et al., 1983; Smilkstein et al., 1988).

Glutathione reductase (GR) is the enzyme responsible for the reduction of oxidized glutathione (GSSG) to GSH (Mitchell et al., 1973). The level of reduced glutathione and the activities of glutathione-dependent enzymes were reduced significantly in rats administered with acetaminophen in the present investigation. The depression in GR contents along with GPx activity makes the cells more susceptible to toxic compounds. Administration of PCM caused a reduction of GR and GPx levels in plasma.

Catalase (CAT) is one of the most important intracellular antioxidant enzymes in the detoxification of the oxidant hydrogen peroxide. Catalase, widely distributed

Table 1: Effect of oral administration of paracetamol alone or with Ecballium elaterium "fruit juice" 1 ml/kg or with vitamin C on serum liver functions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (u/l)</th>
<th>Positive (u/l)</th>
<th>E. elaterium+ Paracetamol (u/l)</th>
<th>Vitamin C + Paracetamol (u/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>43.45±3.72</td>
<td>188.3±15.35</td>
<td>72.43±4.66</td>
<td>88.43±5.72</td>
</tr>
<tr>
<td>AST</td>
<td>96.37±4.22</td>
<td>257.12±8.57</td>
<td>125.26±4.32</td>
<td>138.6±5.75</td>
</tr>
<tr>
<td>LDH</td>
<td>40.54±1.82</td>
<td>123.6±4.52</td>
<td>53.71±2.22</td>
<td>48.87±5.03</td>
</tr>
<tr>
<td>G-GT</td>
<td>3.72±1.61</td>
<td>13.3±2.31</td>
<td>5.04±0.57</td>
<td>5.85±0.97</td>
</tr>
<tr>
<td>ALP</td>
<td>15.0±4.83</td>
<td>255±2.53</td>
<td>164±4.75</td>
<td>171±3.93</td>
</tr>
<tr>
<td>T. Bilirubin (mg/dl)</td>
<td>0.45±0.14</td>
<td>1.98±0.36</td>
<td>0.66±0.23</td>
<td>0.71±0.35</td>
</tr>
<tr>
<td>T. Protein (g/dl)</td>
<td>9.8±0.80</td>
<td>4.54±0.23</td>
<td>7.34±0.66</td>
<td>6.8±0.54</td>
</tr>
</tbody>
</table>

*aSignificant difference at P < 0.05; **highly sig. difference at P < 0.01; ***Very highly sig. difference at P < 0.001; ↓ Decrease; ↑ Increase; compared with control group; compared with paracetamol positive group.

Table 2: Effect of oral administration of paracetamol alone or with Ecballium elaterium "fruit juice" extract or with vitamin C on antioxidant enzymes activities.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Positive</th>
<th>E. elaterium+ Paracetamol</th>
<th>Vitamin C + Paracetamol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>26.14±0.05</td>
<td>11.71±0.01</td>
<td>22.19±0.02</td>
<td>20.37±0.02</td>
</tr>
<tr>
<td>GPx</td>
<td>30.72±0.39</td>
<td>14.31±0.03</td>
<td>24.63±1.21</td>
<td>21.23±1.44</td>
</tr>
<tr>
<td>CAT</td>
<td>46.45±3.99</td>
<td>22.71±3.52</td>
<td>40.2±5.01</td>
<td>38.11±7.75</td>
</tr>
<tr>
<td>SOD</td>
<td>13.3±1.93</td>
<td>5.31±1.57</td>
<td>11.23±2.51</td>
<td>9.8±2.31</td>
</tr>
<tr>
<td>MDA</td>
<td>19.35±3.66</td>
<td>49.05±3.1</td>
<td>27.3±0.09</td>
<td>22.11±4.05</td>
</tr>
</tbody>
</table>

*aSignificant difference at P < 0.05; **highly sig. difference at P < 0.01; ***Very highly sig. difference at P < 0.001; ↓ Decrease; ↑ Increase; compared with control group; compared with paracetamol positive group.
in all animal tissues, decomposes H$_2$O$_2$ by dismutating it to H$_2$O and O$_2$ (Bhakta et al., 1999) and protects tissue from reactive hydroxyl radicals. The activity of these enzymes was inhibited due to high level of toxic metabolites which produced by administration of PCM that significantly reduced CAT activity, indicating oxidative stress. A decrease in SOD production can be attributed to an enhanced superoxide generation. The activity of SOD enzyme in plasma was also determined. The group treated with PCM showed significantly lower plasma SOD activity than the control group.

In the present study, an elevation in the levels of MDA in the plasma of animals treated with acetaminophen was observed. The increase in MDA level suggests enhanced lipid peroxidation leading to tissue damage and failure of antioxidant defense mechanisms to prevent formation of excessive free radicals. Administration of PCM induced oxidative stress with a significant increase in the levels of plasma MDA.

According to our results about the antioxidant enzymes "GR, GPx, SOD and CAT" in addition to the lipid peroxidation indicator "MDA", we may suggest that the therapeutic potential of Ecballium elaterium "fruit juice" is dependent on an antioxidant mechanism. These results concluded that Ecballium elaterium "fruit juice" inhibition of PCM-induced tissue damage is due to presence of various antioxidant bioactive compounds which mediates its antioxidant effect by scavenging free reactive oxygen species (ROS).

In the present study, the hepatic histoarchitecture of the paracetamol-treated rats resulted severe necrotic changes, inflammatory cell infiltration, fatty degeneration and vacuolization. It might be due to the formation of highly reactive radicals and subsequent lipid peroxidation induced by paracetamol. Administration of Ecballium elaterium "fruit juice" reduced the histological alterations provoked by paracetamol quite appreciable. It can be attributed to the antiradical/antioxidant efficacy of Ecballium elaterium "fruit juice" which significantly reduced the oxidative stress leading to the reduction of histopathological alterations and restoration of normal physiological state of the liver.

CONCLUSION

In the present study, Ecballium elaterium "fruit juice" possessed strong hepatoprotective in a rat model of paracetamol-induced hepatotoxicity. The hepatoprotective activity of Ecballium elaterium "fruit juice" may be due to its free radical-scavenging and antioxidant activity, resulting from the presence of some phenolic compounds in the fruit juice of plant. In general, to use this plant as a safe prophylactic agent, more studies should be carried out to know all the active components and their mechanism of actions weather synergistic or antagonist using different doses from this plant and another types of experimental animals for a long period in order to judgment if this plant could be used as safe agents or not in human therapy.